SHARING MEDICAL DATA

- Primary care
- Medical research
- Connected health
ELECTRONIC MEDICAL RECORDS (EMR)

• HITECH Act (US, 2009) provided a series of incentives to encourage widespread EHR adoption
 – As of 2015, nearly 9 in 10 (87%) of office-based physicians

• Countries of the European Region: According to WHO 59% have a national electronic health record system; 69% of those have legislation governing its use
MANAGEMENT OF PROTECTED HEALTH INFORMATION (PHI)

• **HIPAA** (Health Insurance Portability & Accountability Act of 1996)

• Health information exchange (**HIE**) is a sharing infrastructure for electronic healthcare information across organizations within a region, community or hospital system
EMR DATA SHARING BETWEEN PROVIDERS: CURRENT STATUS

• Patient (or legal representative) signs a disclosure form
 – Patient contact
 – Visit dates
 – Types of records
 – Who will receive it

• Printed records sent by fax or mail (CDs for images), or carried by patients: taking days
PROBLEMS

• Complicated processes on consent management
 – Patient transfer between hospitals may not be predicted
 – Time consuming and delay treatment
 – Wasted resources and increased costs

• Hard copied data difficult to manage
• Control over the data is lost once records shared
PROBLEMS

• Complicated processes on consent management
 – Patient transfer between hospitals may not be predicted
 – Time consuming and delay treatment
 – Wasted resources and increased costs
• Hard copied data difficult to manage
• Control over the data is lost once records shared

How to **speed-up & facilitate** medical data sharing while ensuring **privacy, security and auditability**?
BLOCKCHAIN FOR EHEALTH:
FROM PERSPECTIVES TO AN APPLICATION FOR RADIATION ONCOLOGY

- Alevtina Dubovitskaya, Zhigang Xu, Samuel Ryu, Michael Ignaz Schumacher and Fusheng Wang
BLOCKCHAIN

- Ledger
- Distributed (non-centralised)
- Secured (using crypto)
- Immutable
BLOCKCHAIN

Block 38
- 45da07438...
- Transaction56
- Transaction57
- 09/06/17 11.03am
- 038314966...

Block 39
- 038314966...
- Transaction58
- Transaction59
- Transaction60
- 09/06/17 11.12am
- cdd31151f...

Block 40
- cdd31151f...
- Transaction61
- Transaction62
- Transaction63
- 09/06/17 11.21am
- 5635f923bd...

Id of the previous block
Transactions
Timestamp
Id of the block
DIFFERENT TYPES OF BLOCKCHAIN

- **Permissionless (public) blockchain**
 anyone in the world can read, send transactions to and expect to see them included if they are valid, can participate in the consensus process

 - Bitcoin
 - Ethereum

 - Consensus: Proof of Work* (PoW) (PoStake, PoBurn)
 - Crypto-currency
 - Anonymous nodes
 - «Smart contracts» (Solidity)
DIFFERENT TYPES OF BLOCKCHAIN

• **Permissionless (public) blockchain**
 anyone in the world can read, send transactions to and expect to see them included if they are valid, can participate in the consensus process

• **Permissioned (consortium / fully private) blockchain**
 consensus process is controlled by a pre-selected set of nodes /one organization
 • Hyperledger
 • No crypto-currency
 • Registered nodes
 • «Chaincode» (GO, java)
DIFFERENT TYPES OF BLOCKCHAIN

- **Permissionless (public) blockchain**
 anyone in the world can read, send transactions to and expect to see them included if they are valid, can participate in the consensus process
 - Bitcoin
 - Ethereum

- **Permissioned (consortium / fully private) blockchain**
 consensus process is controlled by a pre-selected set of nodes /one organization
 - Hyperledger

 Trade-off: the ability to create trust and the ability to scale
BLOCKCHAIN FOR EMR

<table>
<thead>
<tr>
<th>EMR</th>
<th>Blockchain (permissioned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private and sensitive</td>
<td>Secure and trusted</td>
</tr>
<tr>
<td>Can not be altered</td>
<td>Immutable</td>
</tr>
<tr>
<td>Audit trails needed: who accessed and reviewed</td>
<td>History kept on blockchain</td>
</tr>
<tr>
<td>Sharing needed among multiple actors</td>
<td>Distributed data sharing architecture</td>
</tr>
<tr>
<td>Fast turnaround for sharing</td>
<td>Quick (second to minute)</td>
</tr>
</tbody>
</table>
MANAGING ONCOLOGY DATA USING BLOCKCHAIN

• Oncology patients may require long term treatment and life-long monitoring.

• Diagnosis and treatment at multiple hospitals are common.

• Legislation requires signed patient consents for sharing data. Consent management may become complicated.
CHOICE OF TECHNOLOGY

• Permissionless (public) blockchain
 – Unnecessary expense of computer power
 – Transaction fee is a major hurdle for patients
 – Anonymity of nodes

• Permissioned (consortium) blockchain
 – Consensus process is controlled by a pre-selected set of nodes
 – Efficient
 – No transaction fee
EMR BLOCKCHAIN ARCHITECTURE
STRUCTURE OF THE DATA STORED IN THE CLOUD:

- **Cloud Server**
 - **Validating Node**: A, B, C, D, E
 - **Solution Users**: patients/doctors
 - **Solution Providers**: mobile/web app
 - **Auditors**: interrogate audit trails

EMR Blockchain Network
- Shared ledger
- Consensus

HIPAA Compliant Cloud Storage

Data Categories
- Clinical Data
- Doctor Id
- Data File

Solution Users
- patients/doctors
- record admin

Solution Providers
- mobile/web app
- Non-Validating Node

Auditors
- interrogate audit trails

Membership Service
- Reg. A
- ECA
- TCA
- TLS/CA

The National Practitioner Data Bank

Validity of Data

Solution Users
- patients/doctors

Solution Providers
- mobile/web app

Auditors
- interrogate audit trails

Membership Service
- Reg. A
- ECA
- TCA
- TLS/CA

HIPAA Compliant Cloud Storage

Data File
- Patient Private Data

STRUCTURE OF THE DATA STORED IN THE CLOUD:
EMR BLOCKCHAIN ARCHITECTURE

Solution Users
patients/doctors
(record admin)

Solution Provider
mobile/web app
Non-Validating Node

Auditors
interrogate
audit trails

EMR Blockchain Network
- Shared ledger
- Consensus

Validating Node D

Chaincode (smart contract): data sharing logic (key management, data operation, access control)

Validating Node E

Membership Service
- Reg. A
- ECA
- TCA
- TLS-CA

Registration authority: assign registration username/passwd pairs to participants
Enrollment CA: issue enrollment certificates to participants already registered
Transaction CA: issue transaction certificates to Ecert owners
TLS CA: issue certificates to systems that transmit message in a chain network

HIPAA Compliant
Cloud Storage

© HIMSS Europe GmbH
21.-22. September 2017
@eHealthSummit
STRUCTURE OF THE DATA STORED ON THE CHAINCODE:

- **State**
 - **Permission**
 - **Data Category**
 - Right (read/write/share)
 - From: To:
 - Timestamp
 - Study Id
 - Anonymity (y/n)
 - **Doctor Id**
 - **Clinical Metadata**
 - **Data Category**
 - **Metadata Item**
 - **Doctor Id**
 - Path To File
 - Hash(File)
 - Timestamp

- **Patient Id**
- **Permissions**
- **Doctor Id**

- **Patient Private Data (CC)**

Chaincode
- **Logic State**
- **Solution Users**
 - patients/doctors
 - Record admin
- **Solution Provider**
 - mobile/web app
 - Non-Validating Node
- **Auditors**
 -Interrogate audit trails

EMR Blockchain Network
- **Shared ledger**
- **Consensus**

Membership Service
- Reg. A
- ECA
- TCA
- TLS-CA

HIPAA Compliant
- Cloud Storage
- **The National Practitioner Data Bank**

© HIMSS Europe GmbH

21.-22. September 2017
@eHealthSummit
ADVANTAGES

• No single point of failure
 – Distributed and replicated
• No need to trust the network nodes
 – Only registered hospitals will participate
• Transparence and immutability
 – All transaction history preserved, forming audit trails
• Security and privacy
 – Enrollment, encryption, access control
WORKFLOW: SETUP

• Multiple hospitals setup an agreement to use the system and install the software

• A Web app is available for users

• Each hospital will have an admin role (virtual or real user) for retrieving EMR records

• Doctors in the hospital are registered through member service
 – A service based on the National Practitioner Bank to verify the identity
ROLES IN A TRANSACTION
 STATE OF THE ART

• **GemOS**: generic platform to create applications based on blockchain

• **Guardtime**: technology based on *KSI (Keyless signature infrastructure)*

• **MedREC**: *decentralized* system based on *public blockchain*
OPEN QUESTIONS

• No legal base
• Verification of the chaincode?
• Risks of the new technology (adoption?)
• Who controls Membership service?
• Key management
CONCLUSIONS AND FUTURE WORK

- Lack of secure and trustable sharing architecture harms the quality of patient care and increases cost
- Our solution using permissioned blockchain is the first work in this field
- Prototype ensures privacy, security, availability, and fine-grained access control over patients' data
- HyperLedger Fabric continues improving and we will improve the system based on latest release
- Next step will be testing across multiple hospitals with patients' data